Understanding mathematical notation is useful to read papers and also be able to write your own equations and understanding of a problem. In this tutorial we will work on walking through understanding the Greek Alphabet, then notation for mathematical operations, and then using LaTex to write equations.
Symbol | Name | Latex |
---|---|---|
Α α |
Alpha | \alpha |
Β β | Beta | \beta |
Γ γ | Gamma | \gamma |
Δ δ | Delta | \delta |
Ε ε | Epsilon | \epsilon |
Ζ ζ | Zeta | \zeta |
Ι ι | Iota | \iota |
Κ κ | Kappa | \kappa |
Λ λ | Lambda | \lambda |
Μ μ | Mu | \mu |
Ν ν | Nu | \nu |
Ξ ξ | Xi | \Xi |
Ο ο | Omicron | \omicron |
Π π | Pi | \pi |
Ρ ρ | rho | \rho |
Τ τ | Tau | \tau |
Υ υ | Upsilon | \upsilon |
Φ φ | Phi | \phi |
Ψ ψ | Psi | \psi |
Ω ω | Omega | \omega |
Symbol | Name | LaTex | Example |
---|---|---|---|
= | Equality | = | x=y if x and y = 1 |
≠ | Inequality | \ne | x≠y if x = 0 and y = 1 |
≈ | Approximation | pi≈3.14 | |
≡ | Identity | ||
< | Less Than | x <y | |
≤ | Less Than or Equal to | x≤y | |
≺ | Precedes | x≺y | |
≻ | Succeeds | x≻y |
Vector use \vec{} to call out a vector in LaTex.
if $\vec{u}=(u_1,u_2,u_3) $ and $\vec{v}=(v_1,v_2,v_3)$
Addition: $\vec{u} +\vec{v} = (u_1+v_1,u_2+v_2,u_3+v_3)$
Substraction: $\vec{u} - \vec{v} = (u_1- v_1,u_2-v_2,u_3-v_3)$
Scaling: $\alpha\vec{u} = (\alpha u_1,\alpha u_2,\alpha u_3)$
Dot Product: $\vec{u}\cdot\vec{v} = u_1v_1 + u_2v_2 + u_3v_3$
Cross Product: $\vec{u} \times\vec{v} = u_2v_3-u_3v_2,u_3v_1-v_3u_1,u_2v_1-u_1u_2$
Length: $||\vec{u}||=\sqrt{u^2_1+u^2_2+u^2_3}$
http://assets.press.princeton.edu/chapters/gowers/gowers_I_2.pdf