Home projects readings blog about

Mathematical Notation Cheatsheet

Published on Monday, 25 January, 2016 Math

Mathematical Notation and Cheatsheet

Understanding mathematical notation is useful to read papers and also be able to write your own equations and understanding of a problem. In this tutorial we will work on walking through understanding the Greek Alphabet, then notation for mathematical operations, and then using LaTex to write equations.

Greek Alphabet

Symbol Name Latex

Α α

Alpha \alpha
Β β Beta \beta
Γ γ Gamma \gamma
Δ δ Delta \delta
Ε ε Epsilon \epsilon
Ζ ζ Zeta \zeta
Ι ι Iota \iota
Κ κ Kappa \kappa
Λ λ Lambda \lambda
Μ μ Mu \mu
Ν ν Nu \nu
Ξ ξ Xi \Xi
Ο ο Omicron \omicron
Π π Pi \pi
Ρ ρ rho \rho
Τ τ Tau \tau
Υ υ Upsilon \upsilon
Φ φ Phi \phi
Ψ ψ Psi \psi
Ω ω Omega \omega

Mathematical Operations

Equality/Similarity

''''
Symbol Name LaTex Example
= Equality = x=y if x and y = 1
Inequality \ne x≠y if x = 0 and y = 1
Approximation pi≈3.14
Identity
< Less Than x <y
Less Than or Equal to x≤y
Precedes x≺y
Succeeds x≻y

Set Theory

Basic Logic

Linear Algebra

Vector

Vector use \vec{} to call out a vector in LaTex.

if $\vec{u}=(u_1,u_2,u_3) $ and $\vec{v}=(v_1,v_2,v_3)$

Addition: $\vec{u} +\vec{v} = (u_1+v_1,u_2+v_2,u_3+v_3)$

Substraction: $\vec{u} - \vec{v} = (u_1- v_1,u_2-v_2,u_3-v_3)$

Scaling: $\alpha\vec{u} = (\alpha u_1,\alpha u_2,\alpha u_3)$

Dot Product: $\vec{u}\cdot\vec{v} = u_1v_1 + u_2v_2 + u_3v_3$

Cross Product: $\vec{u} \times\vec{v} = u_2v_3-u_3v_2,u_3v_1-v_3u_1,u_2v_1-u_1u_2$

Length: $||\vec{u}||=\sqrt{u^2_1+u^2_2+u^2_3}$

Matrix Operations

References

http://assets.press.princeton.edu/chapters/gowers/gowers_I_2.pdf