Understanding mathematical notation is useful to read papers and also be able to write your own equations and understanding of a problem. In this tutorial we will work on walking through understanding the Greek Alphabet, then notation for mathematical operations, and then using LaTex to write equations.
Symbol | Name | Latex |
---|---|---|
Α α |
Alpha | \alpha |
Β β | Beta | \beta |
Γ γ | Gamma | \gamma |
Δ δ | Delta | \delta |
Ε ε | Epsilon | \epsilon |
Ζ ζ | Zeta | \zeta |
Ι ι | Iota | \iota |
Κ κ | Kappa | \kappa |
Λ λ | Lambda | \lambda |
Μ μ | Mu | \mu |
Ν ν | Nu | \nu |
Ξ ξ | Xi | \Xi |
Ο ο | Omicron | \omicron |
Π π | Pi | \pi |
Ρ ρ | rho | \rho |
Τ τ | Tau | \tau |
Υ υ | Upsilon | \upsilon |
Φ φ | Phi | \phi |
Ψ ψ | Psi | \psi |
Ω ω | Omega | \omega |
Symbol | Name | LaTex | Example |
---|---|---|---|
= | Equality | = | x=y if x and y = 1 |
≠ | Inequality | \ne | x≠y if x = 0 and y = 1 |
≈ | Approximation | pi≈3.14 | |
≡ | Identity | ||
< | Less Than | x <y | |
≤ | Less Than or Equal to | x≤y | |
≺ | Precedes | x≺y | |
≻ | Succeeds | x≻y |
Vector use \vec{} to call out a vector in LaTex.
if →u=(u1,u2,u3) and →v=(v1,v2,v3)
Addition: →u+→v=(u1+v1,u2+v2,u3+v3)
Substraction: →u−→v=(u1−v1,u2−v2,u3−v3)
Scaling: α→u=(αu1,αu2,αu3)
Dot Product: →u⋅→v=u1v1+u2v2+u3v3
Cross Product: →u×→v=u2v3−u3v2,u3v1−v3u1,u2v1−u1u2
Length: ||→u||=√u21+u22+u23
http://assets.press.princeton.edu/chapters/gowers/gowers_I_2.pdf